Let (x(t)=δ(t-c₁)-δ(c₂-t)). Determine (y(t)) if (y(t)=∫_-[infinity]ᵗ f(τ)x(τ)dτ), where (f(x)=x³+5x-4). a) (y(t)=1/3(t-c₁)³-1/3(c₂-t)³+5(t-c₁)-5(c₂-t)-4t) b) (y(t)=1/3(t-c₁)³-1/3(c₂-t)³+5(t-c₁)+5(c₂-t)-4t) c) (y(t)=1/3(t-c₁)³-1/3(c₂-t)³+5(t-c₁)-5(c₂-t)+4t) d) (y(t)=1/3(t-c₁)³-1/3(c₂-t)³+5(t-c₁)+5(c₂-t)+4t)